349 research outputs found

    On the fractal structure of the rescaled evolution set of Carlitz sequences of polynomials

    Get PDF
    AbstractSelf-similarity properties of the coefficient patterns of the so-called m-Carlitz sequences of polynomials are considered. These properties are coded in an associated fractal set – the rescaled evolution set. We extend previous results on linear cellular automata with states in a finite field. Applications are given for the sequence of Legendre polynomials and sequences associated with the zero Bessel function

    Ergodicity properties of pp -adic (2,1)(2,1)-rational dynamical systems with unique fixed point

    Full text link
    We consider a family of (2,1)(2,1)-rational functions given on the set of pp-adic field QpQ_p. Each such function has a unique fixed point. We study ergodicity properties of the dynamical systems generated by (2,1)(2,1)-rational functions. For each such function we describe all possible invariant spheres. We characterize ergodicity of each pp-adic dynamical system with respect to Haar measure reduced on each invariant sphere. In particular, we found an invariant spheres on which the dynamical system is ergodic and on all other invariant spheres the dynamical systems are not ergodic

    Optimal box-covering algorithm for fractal dimension of complex networks

    Full text link
    The self-similarity of complex networks is typically investigated through computational algorithms the primary task of which is to cover the structure with a minimal number of boxes. Here we introduce a box-covering algorithm that not only outperforms previous ones, but also finds optimal solutions. For the two benchmark cases tested, namely, the E. Coli and the WWW networks, our results show that the improvement can be rather substantial, reaching up to 15% in the case of the WWW network.Comment: 5 pages, 6 figure

    Wavelet transforms in a critical interface model for Barkhausen noise

    Full text link
    We discuss the application of wavelet transforms to a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered, mainly in the adiabatic limit of very slow driving. On length scales shorter than a crossover length (which grows with the strength of surface tension), the effective interface roughness exponent ζ\zeta is 1.20\simeq 1.20, close to the expected value for the universality class of the quenched Edwards-Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime, shows the wavelet transform of correlations scaling as 1/f1.51/f^{1.5} for intermediate frequencies. This behavior is ascribed to intra-avalanche correlations.Comment: RevTeX, 10 pages, 9 .eps figures; Physical Review E, to be publishe

    Controlling surface statistical properties using bias voltage: Atomic force microscopy and stochastic analysis

    Full text link
    The effect of bias voltages on the statistical properties of rough surfaces has been studied using atomic force microscopy technique and its stochastic analysis. We have characterized the complexity of the height fluctuation of a rough surface by the stochastic parameters such as roughness exponent, level crossing, and drift and diffusion coefficients as a function of the applied bias voltage. It is shown that these statistical as well as microstructural parameters can also explain the macroscopic property of a surface. Furthermore, the tip convolution effect on the stochastic parameters has been examined.Comment: 8 pages, 11 figures

    Long-range correlation and multifractality in Bach's Inventions pitches

    Full text link
    We show that it can be considered some of Bach pitches series as a stochastic process with scaling behavior. Using multifractal deterend fluctuation analysis (MF-DFA) method, frequency series of Bach pitches have been analyzed. In this view we find same second moment exponents (after double profiling) in ranges (1.7-1.8) in his works. Comparing MF-DFA results of original series to those for shuffled and surrogate series we can distinguish multifractality due to long-range correlations and a broad probability density function. Finally we determine the scaling exponents and singularity spectrum. We conclude fat tail has more effect in its multifractality nature than long-range correlations.Comment: 18 page, 6 figures, to appear in JSTA

    Long range correlation in cosmic microwave background radiation

    Full text link
    We investigate the statistical anisotropy and Gaussianity of temperature fluctuations of Cosmic Microwave Background radiation (CMB) data from {\it Wilkinson Microwave Anisotropy Probe} survey, using the multifractal detrended fluctuation analysis, rescaled range and scaled windowed variance methods. The multifractal detrended fluctuation analysis shows that CMB fluctuations has a long range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of temperature fluctuation of CMB is mainly due to the long-range correlations and the map is consistent with a Gaussian distribution.Comment: 10 pages, 7 figures, V2: Added comments, references and major correction

    Fast Estimation of the Vascular Cooling in RFA Based on Numerical Simulation

    Get PDF
    We present a novel technique to predict the outcome of an RF ablation, including the vascular cooling effect. The main idea is to separate the problem into a patient independent part, which has to be performed only once for every applicator model and generator setting, and a patient dependent part, which can be performed very fast. The patient independent part fills a look-up table of the cooling effects of blood vessels, depending on the vessel radius and the distance of the RF applicator from the vessel, using a numerical simulation of the ablation process. The patient dependent part, on the other hand, only consists of a number of table look-up processes. The paper presents this main idea, along with the required steps for its implementation. First results of the computation and the related ex-vivo evaluation are presented and discussed. The paper concludes with future extensions and improvements of the approach

    The shape of invasion perclation clusters in random and correlated media

    Full text link
    The shape of two-dimensional invasion percolation clusters are studied numerically for both non-trapping (NTIP) and trapping (TIP) invasion percolation processes. Two different anisotropy quantifiers, the anisotropy parameter and the asphericity are used for probing the degree of anisotropy of clusters. We observe that in spite of the difference in scaling properties of NTIP and TIP, there is no difference in the values of anisotropy quantifiers of these processes. Furthermore, we find that in completely random media, the invasion percolation clusters are on average slightly less isotropic than standard percolation clusters. Introducing isotropic long-range correlations into the media reduces the isotropy of the invasion percolation clusters. The effect is more pronounced for the case of persisting long-range correlations. The implication of boundary conditions on the shape of clusters is another subject of interest. Compared to the case of free boundary conditions, IP clusters of conventional rectangular geometry turn out to be more isotropic. Moreover, we see that in conventional rectangular geometry the NTIP clusters are more isotropic than TIP clusters
    corecore